迭代器是可以迭代的对象。 在本教程中,您将学习迭代器如何工作以及如何使用__iter__
和__next__
方法构建自己的迭代器。
Python 中的迭代器

迭代器在 Python 中无处不在。 它们在for
循环,理解力,生成器等中优雅地实现,但隐藏在清晰的视野中。
Python 中的迭代器只是可以对其进行迭代的对象。 一个将返回数据的对象,一次返回一个元素。
从技术上讲,Python 迭代器对象必须实现两个特殊方法__iter__()
和__next__()
,统称为迭代器协议。
如果我们可以从中获得一个迭代器,则该对象称为可迭代对象。 Python 中大多数内置容器都是可迭代的,例如:列表,元组,字符串等。
iter()
函数(依次调用__iter__()
方法)从它们返回一个迭代器。
通过迭代器进行迭代
我们使用next()
函数手动迭代迭代器的所有项目。 当我们到达末尾并且没有更多数据要返回时,它将引发StopIteration
异常。 以下是一个示例。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
<span class="pl-c"># define a list</span> <span class="pl-s1">my_list</span> <span class="pl-c1">=</span> [<span class="pl-c1">4</span>, <span class="pl-c1">7</span>, <span class="pl-c1">0</span>, <span class="pl-c1">3</span>] <span class="pl-c"># get an iterator using iter()</span> <span class="pl-s1">my_iter</span> <span class="pl-c1">=</span> <span class="pl-en">iter</span>(<span class="pl-s1">my_list</span>) <span class="pl-c"># iterate through it using next()</span> <span class="pl-c"># Output: 4</span> <span class="pl-en">print</span>(<span class="pl-en">next</span>(<span class="pl-s1">my_iter</span>)) <span class="pl-c"># Output: 7</span> <span class="pl-en">print</span>(<span class="pl-en">next</span>(<span class="pl-s1">my_iter</span>)) <span class="pl-c"># next(obj) is same as obj.__next__()</span> <span class="pl-c"># Output: 0</span> <span class="pl-en">print</span>(<span class="pl-s1">my_iter</span>.<span class="pl-en">__next__</span>()) <span class="pl-c"># Output: 3</span> <span class="pl-en">print</span>(<span class="pl-s1">my_iter</span>.<span class="pl-en">__next__</span>()) <span class="pl-c"># This will raise error, no items left</span> <span class="pl-en">next</span>(<span class="pl-s1">my_iter</span>) |
输出
1 2 3 4 5 6 7 8 |
<span class="pl-c1">4</span> <span class="pl-c1">7</span> <span class="pl-c1">0</span> <span class="pl-c1">3</span> <span class="pl-v">Traceback</span> (<span class="pl-s1">most</span> <span class="pl-s1">recent</span> <span class="pl-s1">call</span> <span class="pl-s1">last</span>): <span class="pl-v">File</span> <span class="pl-s">"<string>"</span>, <span class="pl-s1">line</span> <span class="pl-c1">24</span>, <span class="pl-s1">in</span> <span class="pl-c1"><</span><span class="pl-s1">module</span><span class="pl-c1">></span> <span class="pl-en">next</span>(<span class="pl-s1">my_iter</span>) <span class="pl-v">StopIteration</span> |
一种更优雅的自动迭代方式是for
循环。 使用此方法,我们可以迭代可以返回迭代器的任何对象,例如列表,字符串,文件等。
1 2 3 4 5 6 7 |
<span class="pl-c1">>></span><span class="pl-c1">></span> <span class="pl-k">for</span> <span class="pl-s1">element</span> <span class="pl-c1">in</span> <span class="pl-s1">my_list</span>: ... <span class="pl-s1">print</span>(<span class="pl-s1">element</span>) ... <span class="pl-c1">4</span> <span class="pl-c1">7</span> <span class="pl-c1">0</span> <span class="pl-c1">3</span> |
迭代器和for
循环
如上例所示,for
循环能够自动迭代列表。
实际上,for
循环可以迭代任何可迭代的对象。 让我们仔细看看for
循环是如何在 Python 中实际实现的。
1 2 |
<span class="pl-k">for</span> <span class="pl-s1">element</span> <span class="pl-c1">in</span> <span class="pl-s1">iterable</span>: <span class="pl-c"># do something with element</span> |
实际上是实现为。
1 2 3 4 5 6 7 8 9 10 11 12 |
<span class="pl-c"># create an iterator object from that iterable</span> <span class="pl-s1">iter_obj</span> <span class="pl-c1">=</span> <span class="pl-en">iter</span>(<span class="pl-s1">iterable</span>) <span class="pl-c"># infinite loop</span> <span class="pl-k">while</span> <span class="pl-c1">True</span>: <span class="pl-k">try</span>: <span class="pl-c"># get the next item</span> <span class="pl-s1">element</span> <span class="pl-c1">=</span> <span class="pl-en">next</span>(<span class="pl-s1">iter_obj</span>) <span class="pl-c"># do something with element</span> <span class="pl-k">except</span> <span class="pl-v">StopIteration</span>: <span class="pl-c"># if StopIteration is raised, break from loop</span> <span class="pl-k">break</span> |
因此,在内部,for
循环通过在可迭代对象上调用iter()
创建了迭代器对象iter_obj
。
具有讽刺意味的是,这个for
循环实际上是一个无限while
循环。
在循环内部,它调用next()
获取下一个元素,并使用该值执行for
循环的主体。 所有物品耗尽后,StopIteration
抛出,内部被卡住,循环结束。 请注意,任何其他类型的异常都将通过。
构建自定义迭代器
在 Python 中从头开始构建迭代器很容易。 我们只需要实现__iter__()
和__next__()
方法。
__iter__()
方法返回迭代器对象本身。 如果需要,可以执行一些初始化。
__next__()
方法必须返回序列中的下一项。 在到达末尾以及随后的调用中,它必须提高StopIteration
。
在这里,我们显示一个示例,该示例将在每次迭代中为我们提供下一个 2 的幂。 幂指数从零开始一直到用户设置的数字。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
<span class="pl-k">class</span> <span class="pl-v">PowTwo</span>: <span class="pl-s">"""Class to implement an iterator</span> <span class="pl-s"> of powers of two"""</span> <span class="pl-k">def</span> <span class="pl-en">__init__</span>(<span class="pl-s1">self</span>, <span class="pl-s1">max</span><span class="pl-c1">=</span><span class="pl-c1">0</span>): <span class="pl-s1">self</span>.<span class="pl-s1">max</span> <span class="pl-c1">=</span> <span class="pl-s1">max</span> <span class="pl-k">def</span> <span class="pl-en">__iter__</span>(<span class="pl-s1">self</span>): <span class="pl-s1">self</span>.<span class="pl-s1">n</span> <span class="pl-c1">=</span> <span class="pl-c1">0</span> <span class="pl-k">return</span> <span class="pl-s1">self</span> <span class="pl-k">def</span> <span class="pl-en">__next__</span>(<span class="pl-s1">self</span>): <span class="pl-k">if</span> <span class="pl-s1">self</span>.<span class="pl-s1">n</span> <span class="pl-c1"><=</span> <span class="pl-s1">self</span>.<span class="pl-s1">max</span>: <span class="pl-s1">result</span> <span class="pl-c1">=</span> <span class="pl-c1">2</span> <span class="pl-c1">**</span> <span class="pl-s1">self</span>.<span class="pl-s1">n</span> <span class="pl-s1">self</span>.<span class="pl-s1">n</span> <span class="pl-c1">+=</span> <span class="pl-c1">1</span> <span class="pl-k">return</span> <span class="pl-s1">result</span> <span class="pl-k">else</span>: <span class="pl-k">raise</span> <span class="pl-v">StopIteration</span> <span class="pl-c"># create an object</span> <span class="pl-s1">numbers</span> <span class="pl-c1">=</span> <span class="pl-v">PowTwo</span>(<span class="pl-c1">3</span>) <span class="pl-c"># create an iterable from the object</span> <span class="pl-s1">i</span> <span class="pl-c1">=</span> <span class="pl-en">iter</span>(<span class="pl-s1">numbers</span>) <span class="pl-c"># Using next to get to the next iterator element</span> <span class="pl-en">print</span>(<span class="pl-en">next</span>(<span class="pl-s1">i</span>)) <span class="pl-en">print</span>(<span class="pl-en">next</span>(<span class="pl-s1">i</span>)) <span class="pl-en">print</span>(<span class="pl-en">next</span>(<span class="pl-s1">i</span>)) <span class="pl-en">print</span>(<span class="pl-en">next</span>(<span class="pl-s1">i</span>)) <span class="pl-en">print</span>(<span class="pl-en">next</span>(<span class="pl-s1">i</span>)) |
输出:
1 2 3 4 5 6 7 8 9 10 |
<span class="pl-c1">1</span> <span class="pl-c1">2</span> <span class="pl-c1">4</span> <span class="pl-c1">8</span> <span class="pl-v">Traceback</span> (<span class="pl-s1">most</span> <span class="pl-s1">recent</span> <span class="pl-s1">call</span> <span class="pl-s1">last</span>): <span class="pl-v">File</span> <span class="pl-s">"/home/bsoyuj/Desktop/Untitled-1.py"</span>, <span class="pl-s1">line</span> <span class="pl-c1">32</span>, <span class="pl-s1">in</span> <span class="pl-c1"><</span><span class="pl-s1">module</span><span class="pl-c1">></span> <span class="pl-en">print</span>(<span class="pl-en">next</span>(<span class="pl-s1">i</span>)) <span class="pl-v">File</span> <span class="pl-s">"<string>"</span>, <span class="pl-s1">line</span> <span class="pl-c1">18</span>, <span class="pl-s1">in</span> <span class="pl-s1">__next__</span> <span class="pl-k">raise</span> <span class="pl-v">StopIteration</span> <span class="pl-v">StopIteration</span> |
1 2 3 4 5 6 7 8 9 |
<span class="pl-c1">>></span><span class="pl-c1">></span> <span class="pl-k">for</span> <span class="pl-s1">i</span> <span class="pl-c1">in</span> <span class="pl-v">PowTwo</span>(<span class="pl-c1">5</span>): ... <span class="pl-s1">print</span>(<span class="pl-s1">i</span>) ... <span class="pl-c1">1</span> <span class="pl-c1">2</span> <span class="pl-c1">4</span> <span class="pl-c1">8</span> <span class="pl-c1">16</span> <span class="pl-c1">32</span> |
Python 无限迭代器
不必耗尽迭代器对象中的项目。 可以有无限迭代器(永无止境)。 处理此类迭代器时必须小心。
这是一个演示无限迭代器的简单示例。
可以使用两个参数来调用内置函数 iter()
函数,其中第一个参数必须是可调用的对象(函数),第二个参数是前哨。 迭代器将调用此函数,直到返回的值等于哨兵。
1 2 3 4 5 6 7 8 |
<span class="pl-c1">>></span><span class="pl-c1">></span> <span class="pl-en">int</span>() <span class="pl-c1">0</span> <span class="pl-c1">>></span><span class="pl-c1">></span> <span class="pl-s1">inf</span> <span class="pl-c1">=</span> <span class="pl-en">iter</span>(<span class="pl-s1">int</span>,<span class="pl-c1">1</span>) <span class="pl-c1">>></span><span class="pl-c1">></span> <span class="pl-en">next</span>(<span class="pl-s1">inf</span>) <span class="pl-c1">0</span> <span class="pl-c1">>></span><span class="pl-c1">></span> <span class="pl-en">next</span>(<span class="pl-s1">inf</span>) <span class="pl-c1">0</span> |
我们可以看到int()
函数始终返回 0。因此,将其传递为iter(int,1)
将返回一个迭代器,该迭代器将调用int()
,直到返回的值等于 1。这永远不会发生,并且会得到一个无限的迭代器。
我们还可以构建自己的无限迭代器。 理论上,以下迭代器将返回所有奇数。
1 2 3 4 5 6 7 8 9 10 11 12 |
<span class="pl-k">class</span> <span class="pl-v">InfIter</span>: <span class="pl-s">"""Infinite iterator to return all</span> <span class="pl-s"> odd numbers"""</span> <span class="pl-k">def</span> <span class="pl-en">__iter__</span>(<span class="pl-s1">self</span>): <span class="pl-s1">self</span>.<span class="pl-s1">num</span> <span class="pl-c1">=</span> <span class="pl-c1">1</span> <span class="pl-k">return</span> <span class="pl-s1">self</span> <span class="pl-k">def</span> <span class="pl-en">__next__</span>(<span class="pl-s1">self</span>): <span class="pl-s1">num</span> <span class="pl-c1">=</span> <span class="pl-s1">self</span>.<span class="pl-s1">num</span> <span class="pl-s1">self</span>.<span class="pl-s1">num</span> <span class="pl-c1">+=</span> <span class="pl-c1">2</span> <span class="pl-k">return</span> <span class="pl-s1">num</span> |
样本运行如下。
1 2 3 4 5 6 7 8 9 |
<span class="pl-c1">>></span><span class="pl-c1">></span> <span class="pl-s1">a</span> <span class="pl-c1">=</span> <span class="pl-en">iter</span>(<span class="pl-v">InfIter</span>()) <span class="pl-c1">>></span><span class="pl-c1">></span> <span class="pl-en">next</span>(<span class="pl-s1">a</span>) <span class="pl-c1">1</span> <span class="pl-c1">>></span><span class="pl-c1">></span> <span class="pl-en">next</span>(<span class="pl-s1">a</span>) <span class="pl-c1">3</span> <span class="pl-c1">>></span><span class="pl-c1">></span> <span class="pl-en">next</span>(<span class="pl-s1">a</span>) <span class="pl-c1">5</span> <span class="pl-c1">>></span><span class="pl-c1">></span> <span class="pl-en">next</span>(<span class="pl-s1">a</span>) <span class="pl-c1">7</span> |
等等…
使用迭代器的优点是节省了资源。 如上图所示,我们无需将整个数字系统存储在内存中就可以获得所有奇数。 从理论上讲,我们可以在有限内存中包含无限项。
有一种在 Python 中创建迭代器的简便方法。 要了解更多信息,请访问:使用yield
的 Python 生成器。