Menu Close

二极管

二极管又称二极体,是只在某个方向施加电压时才有电流的具有整流作用的2端口半导体器件。二极管有各种各样的种类。例如,连接p型半导体和n型半导体的pn结二极管、连接半导体和金属的肖特基二极管、利用由隧道效应的击穿现象在比较低的反向电压下流出电流的齐纳二极管(恒压二极管)、还有在p型n型之间加入i(intrinsic)型(半导体)从而提高少数载流子的累积现象使反向回复时间变短的pin结二极管。

二极体(英语:diode)又称二极体,是一种具有不对称电导的两个端子(阴阳二极接线端,故名“二极”)的电子元件;此二极使其原则上仅允许电流作单方向传导,它在一个方向为低电阻(理想情况下是零),高电流,而在另一个方向为高电阻。现今,二极(理想情况下是零)用半导材料。

各种二极体,最下方为桥式整流器。通常在二极管的阴极端会有色带标示,也就是说电流会从这里流出。
各种二极体,最下方为桥式整流器。通常在二极管的阴极端会有色带标示,也就是说电流会从这里流出。
各种二极体,最下方为桥式整流器。通常在二极管的阴极端会有色带标示,也就是说电流会从这里流出。
70年代北京电子厂生产的二极管
70年代北京电子厂生产的二极管

借由二极管的特性,在电力工程上常用作整流器(将交流电变成直流电);在电子工程上常用作检波器(从调幅波检回音波);在计算机硬件逻辑设计上常用作逻辑电路的逻辑闸。

1874年,德国物理学家卡尔·布劳恩在卡尔斯鲁厄理工学院发现了晶体的整流能力。因此1906年开发出的第一代二极管——“猫须二极管”是由方铅矿等矿物晶体制成的。早期的二极体还包含了真空管,真空管二极体具有两个电极 ,一个阳极和一个热式阴极,借由电极之间加上的电压能够让热电子从阴极到达阳极,因而有整流的作用。

在半导体性能被发现后,半导体二极体成为了世界上第一种半导体器件。现如今的二极体大多是使用矽来生产,锗等其它半导体材料有时也会用到。目前最常见的结构是,一个半导体性能的结晶片通过PN结连接到两个电终端。

二极管功能

二极体具有阳极和阴极两个端子,电流只能往单一方向流动。也就是说,电流可以从阳极流向阴极,而不能从阴极流向阳极。对二极体所具备的这种单向特性的应用,通常称之为“整流”功能,可将交流电转变为脉动直流电(英语:Pulsed DC),例如:无线电接收器对无线电信号的调制,就是通过整流来完成的。

因为其顺向流通逆向阻断的特点,二极体可以想成电子版的逆止阀。然而实际上,二极体并不会表现出如此完美的开关性,而是呈现出较为复杂的非线性电子特征——这是由特定类型的二极体技术决定的。一般来说,只有在正向超过障壁电压时,二极体才会工作(此状态被称为顺向偏压)。一个正向偏置的二极体两端的电压降变化只与电流有一点关系,并且是温度的函数。因此这一特性可用于温度传感器或参考电压。

半导体二极管的非线性电流-电压特性,可以根据选择不同的半导体材料和掺杂不同的杂质从而形成杂质半导体来改变。特性改变后的二极管在使用上除了用做开关的方式之外,还有很多其他的功能,如:用来调节电压(齐纳二极管),限制高电压从而保护电路(雪崩二极管),无线电调谐(变容二极管),产生射频振荡(隧道二极管、耿氏二极管、IMPATT二极管)以及产生光(发光二极管)。

半导体二极体中,有利用P型和N型两种半导体接合面的PN结效应,也有利用金属与半导体接合产生的肖特基效应达到整流作用的类型。若是PN结型的二极体,在P型侧就是阳极,N型侧则是阴极。

半导体二极管

电路图中用于二极管的图标如下图表所示:

电路图中用于二极管的图标如下图表所示
电路图中用于二极管的图标如上图表所示

晶体二极管分类

晶体二极管可按材料不同和PN结结构不同,进行分类。

01点接触型二极管

点接触型二极管是在锗或硅材料的单晶片上压触一根金属针后,再通过电流法而形成的。

其PN结的静电容量小,适用于高频电路。因为构造简单,所以价格便宜。对于小信号的检波、整流、调制、混频和限幅等一般用途而言,它是应用范围较广的类型。与面结型相比较,点接触型二极管正向特性和反向特性都差,因此不能使用于大电流和整流。

制作工艺:将细铝丝的一端接在阳极引线上,另一端压在掺杂过的N型半导体上。加上电压后,细铝丝在接触点处融化并渗入融化部分的中。这样,接触点实际上是P型半导体,并附着在N型半导体上形成PN结。

02面接触型二极管

面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。面接触型晶体二极管比较适用于大电流开关。

平面型二极管

平面型二极管是一种特制的硅二极管,得名于半导体表面被制作得平整。最初,对于被使用的半导体材料是采用外延法形成的,故又把平面型称为外延平面型。

在半导体单晶片(主要地是N型硅单晶片)上,扩散P型杂质,利用硅片表面氧化膜的屏蔽作用,在N型硅单晶片上仅选择性地扩散一部分而形成的PN结。因PN结合的表面被氧化膜覆盖,稳定性好和寿命长。

它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。

晶体二极管主要特性

二极管的伏安特性曲线如下:

外加电压Uw方向为P→N时,Uw大于起动电压,二极管导通;

外加电压Uw方向为N→P时,Uw大于反向击穿电压,二极管击穿。

晶体二极管性能参数

最大整流电流Idm:二极管连续工作允许通过的最大正向电流;电流过大,二极管会因过热烧毁;大电流整流可加装散热片。

最大反向电压Urm:Urm一般小于反向击穿电压,选规格以Urm为准,并留有余量;过电压易损坏二极管。

反向饱和电流Is:二极管外加反向电压时的电流值;Is反向击穿前很小,变化也很小;Is会随温度的升高而升高,一般地,常温下硅管Is<1μA,锗管Is=30~300μA。

最高工作频率Fm:指二极管能保持良好工作特性的最高工作频率。

二极管按用途和特性分类

01整流二极管

大部分二极管所具备的电流方向性我们通常称之为“整流(Rectifying)”功能,将交流电能转变为直流电能。

面接触结构,多采用硅材料,能承受较大的正向电流和较高的反向电压。性能较稳定,但因结电容较大,不宜工作在高频电路中,所以不能作为检波管使用。有金属和塑料封装。

02检波二极管

检波二极管是用于把叠加在高频载波上的低频信号检出来的器件,它具有较高的检波效率和良好的频率特性。

锗材料点接触型、工作频率可达400MHz,正向压降小,结电容小,检波效率高,频率特性好,为2AP型。

类似点触型那样检波用的二极管,除用于检波外,还能够用于限幅、削波、调制、混频、开关等电路。也有为调频检波专用的特性一致性好的两只二极管组合件。

多采用玻璃封装或陶瓷外壳封装,以获得良好的高频特性。

03开关二极管

开关二极管是半导体二极管的一种,是为在电路上进行“开”、“关”而特殊设计制造的一类二极管。它由导通变为截止或由截止变为导通所需的时间比一般二极管短。

开关二极管的势垒电容一般极小,这就相当于堵住了势垒电容这条路,达到了在高频条件下还可以保持好的单向导电性的效果。

开关二极管从截止(高阻状态)到导通(低阻状态)的时间叫开通时间;从导通到截止的时间叫反向恢复时间;两个时间之和称为开关时间。一般反向恢复时间大于开通时间,故在开关二极管的使用参数上只给出反向恢复时间。开关二极管的开关速度是相当快的,像硅开关二极管的反向恢复时间只有几纳秒,即使是锗开关二极管,也不过几百纳秒。

开关二极管具有开关速度快、体积小、寿命长、可靠性高等特点,广泛应用于电子设备的开关电路、检波电路、高频和脉冲整流电路及自动控制电路中。

04稳压二极管

稳压二极管,是指利用PN结反向击穿状态,其电流可在很大范围内变化而电压基本不变的现象,制成的起稳压作用的二极管。

稳压二极管的伏安特性曲线的正向特性和普通二极管差不多,反向特性是在反向电压低于反向击穿电压时,反向电阻很大,反向漏电流极小。但是,当反向电压临近反向电压的临界值时,反向电流骤然增大,称为击穿。

05变容二极管

变容二极管(Varactor Diodes)又称”可变电抗二极管”。材料多为硅或砷化镓单晶,并采用外延工艺技术。

它一种利用PN结电容(势垒电容)与其反向偏置电压Vr的依赖关系及原理制成的二极管,其结构图如下。

变容二极管的作用是利用PN结之间电容可变的原理制成的半导体器件,在高频调谐、通信等电路中作可变电容器使用。

变容二极管属于反偏压二极管,改变其PN结上的反向偏压,即可改变PN结电容量。反向偏压越高,结电容则越少,反向偏压与结电容之间的关系是非线性的。

变容二极管的电容值与反向偏压值的关系图解:

  • 反向偏压增加,造成电容减少;
  • 反向偏压减少,造成电容增加;
  • 反偏电压愈大,则结电容愈小。

06发光二极管

发光二极管简称为LED。由含镓(Ga)、砷(As)、磷(P)、氮(N)等的化合物制成。

当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管。砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光,氮化镓二极管发蓝光。因化学性质又分有机发光二极管OLED和无机发光二极管LED。

07阻尼二极管

阻尼二极管类似于高频、高压整流二极管,其特点是具有较低有电压降和较高的工作频率,且能承受较高的反向击穿电压和较大的峰值电流。

阻尼二极管主要用在电视机中,作为阻尼二极管、升压整流二极管或大电流开关二极管使用。

08二极管芯组

整流桥堆(半桥、全桥):

高压硅堆(多个硅二极管串联):

二极管的检测

更详细的二极管依照应用及特性分类:

  • PN接面二极体(PN Diode)
施加顺向偏压,利用半导体中PN接合的整流性质,是最基本的半导体二极体,常见应用于整流方面以及与电感并联保护其他元件用。细节请参照PN接面的条目。
  • 萧特基二极体
利用金属和半导体二者的接合面的“萧特基效应”的整流作用。由于顺向的切入电压较低,导通回复时间也短,适合用于高频率的整流。一般而言漏电流较多,突波耐受度较低。也有针对此缺点做改善的品种推出。
  • 稳压二极体(Reference Diode)(常用称法:齐纳二极体)
施加逆向偏压,超过特定电压时发生的反向击穿电压随反向电流变化很小,具有一定的电压稳定能力。利用此性质做成的元件被用于电压基准。借由掺杂物的种类、浓度,决定击穿电压(破坏电压)。其顺向偏压与一般的二极体相同。
  • 恒流二极体(英语:Constant-current diode)(或称定电流二极体,CRD、Current Regulative Diode)
被施加顺方向电压的场合,无论电压多少,可以得到一定的电流的元件。通常的电流容量在1~15mA的范围。虽然被称为二极体,但是构造、动作原理都与接合型电场效应电晶体相似。
  • 变容二极体
施加逆向偏压,二极体PN接合的空乏层厚度会因电压不同而变化,产生静电容量(接合容量)的变化,可当作由电压控制的可变电容器使用。没有机械零件所以可靠度高,广泛应用于压控振荡器或可变电压滤波器,也是电视接收器和行动电话不可缺少的零件。
  • 发光二极体(LED)
施加顺向偏压,可以发光的二极体。由发光种类与特性又有红外线二极体、各种颜色的可见光二极体、紫外线二极体等。
  • 雷射二极体
当LED产生的光是频宽极窄的同调光(Coherent Light)时,则称为雷射二极体。
  • 光电二极体
光线射入PN接面,P区电洞、N区电子大量发生,产生电压(光电效应)。借由测量此电压或电流,可作为光感应器使用。有PN、PIN、萧特基、APD等类型。太阳电池也是利用此种效应。
  • 隧道二极体(Tunnel Diode)、江崎二极体(Esaki Diode)、透纳二极体
由日本人江崎玲于奈于1957年发明。是利用量子穿隧效应的作用,会出现在一定偏置范围内顺向电压增加时流通的电流量反而减少的“负电阻”的现象。这是最能耐受核辐射的半导体二极管。
  • PIN二极体(P-intrinsic-N Diode)
PN之间一层高电阻的半导体层,使少数载子的积蓄效果增加,逆回复时间也较长。利用顺向偏压时高频率讯号较容易通过的性质,用于天线的频带切换以及高频率开关。
  • 耿效应二极体
应用于低功率微波振荡器。
  • 二极真空管
  • 气体放电管整流器
针状电极和平板电极相向接近尖端放电。若把针状电极当做负极,比较低的电压就会开始放电。利用这样的性质来做当作整流器。
  • 点接触二极体
用钨之类的金属针状电极与N型半导体的表面接触,此构造的特征是寄生电容非常小。采用于锗质二极体和耿效应二极体。矿石收音机中使用的矿石检波器(日语:鉱石検波器)也是一种点接触二极体。
  • 双向触发二极体(英语:DIAC)(DIAC)、突波保护二极体、交流二极体
当施加超过规定电压(Break Over电压,VBO)的电压会开始导通使得端子之间的电压降低的双方向元件。用于电路的突波保护上。另,虽被称为二极体,实际的构造、动作原理都应归类为闸流管/可控硅整流器的复杂分类中。
  • 非线性电阻器
若超过一定电压,电阻就会降低。是保护电路受到突波电压伤害的双向元件。通常由二氧化锌的烧结体颗粒制成,当作非线性电阻使用。虽然一般认为它的作用应是由内部众多金属氧化物颗粒间的萧特基接面二极体效应而产生,但对外并不呈现二极体的特性,因此平常并不列在二极体分类之中。
  • 几何二极体(Geometric diode)
利用奈米尺寸的几何结构实现特性。有望应用于需要极高速整流的领域[14]如光整流天线(英语:Optical rectenna),实现将可见光或红外线转化为直流电的功能。

 

二极管依照材料及发展年代分类:

  1. 二极真空管
  2. 锗二极体
  3. 硒二极体
  4. 硅二极体
  5. 砷化镓二极体

 

 

除教程外,本网站大部分文章来自互联网,如果有内容冒犯到你,请联系我们删除!

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

Leave the field below empty!